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RESEARCH GOALS 
 
The goal of the proposed research was to further develop and test models of volume 
scattering by utilizing the existing suite of instrumentation previously developed at APL- 
UW for the study of high-frequency acoustics. In order to perform the data/model 
comparisons, extensive environmental characterization was also to be performed in the 
pond and at-sea. 
 
TECHNICAL APPROACH 
 
FY10 
 
APL-UW and NSWC-PCD are participating in an experiment in the NSWC test pond in 
the spring of FY10. Drs. Steven Kargl and Joseph Lopes are leading this effort. In order 
to perform the backscattering measurements utilizing the equipment to be deployed in the 
pond, a one-week extension will be added to this experiment. This extension will focus 
on backscattering measurements from a smoothed interface as was done in FY09 as well 
as from more complicated sediment manipulations including the addition of coarse 
grains, shell distributions, sediment layers, and interface roughness. 
The environmental characterization in the pond during this experiment will include 
conductivity probe measurements using the In-situ Measurement of Porosity (IMP2) 
system, roughness measurements using the IMP2/LLS, sound speed and attenuation 
measurements using the Sediment Transmission and Measurement System (STMS1), and 
diver cores which will be collected for high-resolution CT scans for volume 
heterogeneity. All of these systems are scheduled for deployment during the Kargl/Lopes 
experiment and the work proposed here will leverage the existing effort. 

Accomplishments: The one-week experiment took place in the NSWC test facility. High 
frequency backscatter and sediment propagation data was collected along with 
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environmental measurements of the sediment. These measurements are discussed in a 
proceedings paper submitted to the European Conference on Underwater Acoustics in 
2010. 

FY11 

Following the experiments in FY10, a second set of experiments will be performed either 
in the NSWC pond or in laboratory facilities at APL-UW. The ability to conduct 
experiments in the pond will depend on whether funding is available to deploy the APL- 
UW rail system for continued SAS experiments. If this should not be possible, extensive 
scattering experiments will be conducted at APL-UW. In either case, these experiments 
will explore issues raised by the experiments in FY10. 

Accomplishments: In January 2011, I was asked by ONR (Ben Reeder) to be co-chief 
scientist for the TREX13 experiment. A portion of my funding therefore went towards 
planning and preparation for the 2013 experiment. In the spring of 2011, an engineering 
test was conducted in the Gulf of Mexico at the future TREX13 site. This test was 
leveraged to collect environmental data using APL-UW assets with funds from this grant. 
This data was used to aid site selection and as input to preliminary acoustic modeling for 
the experiment. On June 1, 2011, the first reverberation workshop was held in 
Washington, DC.  Analysis of the 2010 pond data continued, as did theory development. 
The results of this progress were presented in a proceedings paper submitted to the 
European Conference on Underwater Acoustics in 2012. 

FY12 

Field Experiment: While the pond experiments will be performed to utilize a controlled 
environment, the FY12 effort will focus on a more complicated, shallow-water 
environment similar to SAX99 and SAX04. This experiment will again use the bistatic 
array deployed with the APL-UW rail system in an attempt to resolve some of the 
outstanding questions that remain from SAX04. This effort will be performed in 
conjunction with a Reverberation Field Experiment (RFE) being proposed by Dr. Tang. 

Accomplishments: In the spring of 2012, a pilot experiment for TREX13 was conducted 
in the Gulf of Mexico. During this experiment, backscattering data and environmental 
parameters were collected at the experiment site. This data and preliminary analysis was 
presented at the fall 2012 ASA meeting. This experiment also showed us that the In-Situ 
Measurement of Porosity (IMP2) system needed a substantial overhaul in preparation for 
TREX13. A portion of the grant was used to fund this successful refurbishment and the 
system was deployed extensively during TREX13.  Planning continued for the 2013 
experiment with workshops held in January and October 2012. 
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Abstract

At high frequencies, the attenuation measured in sand sediments is

larger then the predictions of Biot theory. To account for this discrep-

ancy, perturbation theory is used to incorporate losses due to scatter-

ing by porosity variations into both Biot’s poroelastic equations and

the e↵ective density fluid model. While previous results showed that

fluctuations in the bulk frame modulus were insu�cient to produce sig-

nificant attenuation in a sand sediment, modest levels of fluctuations in

the porosity produce significant scattering loss. By using the sediment

parameters and the heterogeneity power spectrum measured during

the Sediment Acoustics Experiment in 2004, the perturbation theory

result shows good agreement with the sound speed and attenuation

data without any free parameters.

PACS numbers: 43.30.Ma, 43.20.Gp, 43.20.Jr
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I. INTRODUCTION

High-frequency sound propagation in fluid-saturated, unconsolidated granular media, in-

cluding ocean sediments, exhibits attenuation greater than is predicted by Biot theory. When

the wavelength is less than the grain diameter, the attenuation goes as f 4 and the dominant

loss mechanism is likely scattering from the individual grains1,2. When the wavelength is

longer than the mean grain diameter in the medium, the attenuation often exhibits a linear

frequency dependence as opposed to the f 1/2 dependence predicted by Biot theory3–5. For

sand sediments, models have been proposed which introduce additional loss mechanisms,

such as squirt-flow1,6 or friction, at the grain contacts and either use Biot Theory or an

additional grain contact model to account for the low frequency attenuation7.

Adding a loss mechanism at the grain contacts follows from observations made elsewhere

in the granular physics community. Dry granular materials have frictional losses at the

grain contacts and it is logical to assume that similar losses would be present in a fluid-

saturated medium. The di�culty with this approach is that these models involve grain

contact parameters that must be determined from empirical fits to the sound speed and

attenuation data. In most cases, the required parameters do not even have a clear connection

to any measurable geophysical parameter, such as the fluid viscosity or the grain bulk

modulus, and are instead constants in a spring-dashpot model of the contact.

The model presented here also considers the importance of the granular nature of a

sand sediment, but instead of positing loss mechanisms at the grain contacts, we consider

losses due to the scattering of sound from variations in the sediment pore structure. This

approach builds on theory developed previously to account for scattering from variations in

the bulk frame modulus8. In that work, we applied perturbation theory to Biot’s poroelastic

equations and found that in an ocean sediment the frame moduli are too weak to produce

significant scattering contributions to the attenuation. The degree to which variations in

any sediment parameter will lead to scattering depends on how strongly those variations

a↵ect the local wavenumber in the medium. In Ref. 3, the authors examined how much the
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sound speed and attenuation varied over the uncertainty ranges of the measured sediment

parameters. While the limits of the frame bulk modulus uncertainties were roughly %40 of

the mean value, neither the sound speed nor the attenuation showed any significant e↵ect.

Small changes in the porosity (%4), however, produced significant changes in the modeled

sound speed. It seems likely then that the local wavenumber will vary greatly in a medium

with variations in porosity thus producing significant scattering losses.

To determine the degree to which scattering from porosity variations contributes to the

attenuation, we will apply perturbation theory to Biots poroelastic equations using the same

approach used previously for moduli variations. Since the goal is to understand propagation

in sand sediments, only weakly consolidated sediments will be considered, specifically sedi-

ments where K
b

, µ
b

⌧ K
g

where K
b

, µ
b

, and K
g

are the frame bulk, frame shear, and grain

moduli respectively. Previously it was found that porosity variations only weakly scatter

energy into the Biot slow wave and the shear wave9. This is confirmed here for the scattering

into the slow wave and the focus will be primarily on losses due to scattering into incoherent

fast compressional waves.

This scattering is incorporated using perturbation theory in Section III for both the

full Biot poroelastic equations and the e↵ective density fluid model (EDFM). The resulting

wave equations are solved first for the exponential correlation function in Section IV. While

the exponential function provides insight into e↵ects of the random medium on the sound

propagation, it does not produce the linear attenuation observed in sand sediments. In

order to fit the measured data, a correlation function is introduced in section V that has

a corresponding power spectrum that can provide a broad range of spectral slopes. This

correlation function is shown to fit the attenuation and sound speed measured in the Sed-

iment Acoustics Experiment in 1999 and the parameters required to produce this fit and

their implications for the statistics of the sediment are discussed in Section VII.
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II. HETEROGENOUS BIOT POROELASTIC EQUATIONS

To examine the e↵ect of porosity heterogeneities on sound propagation, we will apply

perturbation theory to Biot’s poroelastic equations. In Ref.8, these were given where both

the frame moduli and the porosity were allowed to vary as a function of position. When the

frame moduli are assumed to be constant, the equations have the same form,

@
i

[(H � 2µ
b

)r · u� Cr ·w] + (1)

@
j

[µ
b

(@
i

u
j

+ @
j

u
i

)] = �!2⇢u
i

+ !2⇢
f

w
i

and

@
i

[Cr · u�Mr ·w] = �!2⇢
f

u
i

+ !2⇢⇤w
i

, (2)

where u is the displacement of the frame, w = � (u� uf ) is the relative displacement of the

pore fluid to the frame, uf is the displacement of the pore fluid, ⇢
g

is the sediment particle

mass density, and

H =
(K

g

�K
b

)2

D �K
b

+K
b

+
4µ

b

3
, (3)

C =
K

g

(K
g

�K
b

)

D �K
b

, (4)

M =
K2

g

D �K
b

, (5)

D = K
g


1 + �

✓
K

g

K
f

� 1

◆�
, (6)

⇢ = (1� �) ⇢
g

+ �⇢
f

, (7)

and

⇢⇤ =
↵⇢

f

�
+

iF⌘

!
, (8)

where K
f

is the bulk modulus of the pore fluid, ↵ is the tortuosity, and the parameter F

represents the deviation from Poiseuille flow as frequency increases. The expression for F is

given and discussed in Ref.3.

As was done previously, these equations can be consolidated into a single, matrix equa-

tion as

r [[K]r ·U]� [µ̃
0

]r⇥ (r⇥U) + [⇢]!2U = 0 (9)
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where

[K] =

2

64
H �C

C �M

3

75 , (10)

[⇢] =

2

64
⇢ �⇢

f

⇢
f

�⇢⇤

3

75 , (11)

[µ̃] =

2

64
µ
b

0

0 0

3

75 , (12)

and

U =

2

64
u

w

3

75 . (13)

which for the homogeneous case, when [K] = [K
0

] and [⇢] = [⇢
0

] are constants, reduces to

([K
0

]� [µ̃
0

])r (r ·U) + [µ̃
0

]r2U+ [⇢
0

]!2U = 0. (14)

This equation admits three solutions: fast and slow compressional waves and a shear wave.

For a typical sand sediment, the frame moduli are much smaller then the grain and

fluid moduli and the medium only weakly supports the Biot slow wave and the shear wave.

In the limit as K
b

= µ
b

= 0, the medium can be described as a fluid with an e↵ective

compressibility,

 = (1� �)
g

+ �
w

, (15)

and an e↵ective density,

⇢
e↵

=
⇢⇢⇤ � ⇢2

w

⇢⇤ + ⇢� 2⇢
w

, (16)

This description of a poroelastic medium is referred to as the e↵ective density fluid model

(EDFM)10. The equation of motion for the EDFM reduces to

r ·
✓

1

⇢
e↵

rp

◆
+ !2p = 0, (17)

where the e↵ective pressure, p, is related to the e↵ective displacement in the medium,

u
e↵

= (1� �)u� �u
f

, (18)
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through

p = � 1


e↵

r · u
e↵

. (19)

In a homogeneous medium, the equation of motion simplifies to

r2p+ k2

e↵

p = 0 (20)

and the wavenumber in this medium is

k
e↵

= !
p
⇢
e↵

. (21)

In the following, we will consider perturbations to both Eq. (9) and Eq. (17).

III. PERTURBATION THEORY

To understand the role of the porosity fluctuations in sound propagation through the

sediment, we will consider a poroelastic medium where the porosity varies with position,

� (r) = �
0

+ �� (r) . (22)

We will also assume that a porous medium can be described by Biot’s poroelastic equations

and use perturbation theory to determine the e↵ect of scattering on the fast compressional

wave. In the specific case of a sand sediment, perturbation theory will also be applied to

the e↵ective density fluid model.

There are two approaches to solving for the mean wavenumber. The first converts the

scattering equation into an integral equation for the Green’s function for the inhomogeneous

medium. This equation is solved iteratively to obtain the Dyson equation which is then

truncated for a first order approximation. This approach was used by Rytov et al11 for an

inhomogeneous fluid medium and more recently by Muller and Gurevich12 for an inhomoge-

neous poroelastic medium. In the latter case, only the losses due to mode conversion between

the fast and slow compressional waves were considered in the low-frequency approximation.

In the approach taken here, perturbation theory is applied to the wave equation in an

inhomogeneous medium and then solved iteratively for the mean field. This yields a series
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solution which is truncated to yield the solution up to second order. The resulting equation

is solved for plane wave propagation to find the e↵ective wavenumber. This approach was

developed by Karal and Keller13 for the general case of scalar, elastic, or electromagnetic

wave propagation in a random medium and later extended to poroelastic wave propagation8.

While both of these approaches give the same results for the mean wavenumber in the

medium, the solution to the Dyson equation also provides an approximation to the Green’s

function. Since our primary interest is to explore the e↵ects of scattering on the dispersion

and attenuation in medium, we will use the approach developed in Ref. 8.

A. Perturbation theory applied to Biot‘s equations

In Biot’s poroelastic equations, both the moduli and density matrices are functions of

the porosity. By assuming that the fluctuations are small, we can expand these matrices

about the mean porosity,

[K] = [K
0

] + [FK1] �� +
1

2
[FK2] ��

2 + . . . (23)

and

[⇢] = [⇢
0

] + [F
⇢1] �� +

1

2
[F

⇢2] ��
2 + . . . , (24)

where

[FKn] =
@n [K

0

]

@�n

(25)

and

[F
⇢n] =

@n [⇢
0

]

@�n

. (26)

This situation di↵ers from the case of frame moduli variations which was explored in Ref.

8, where only the moduli matrix was a↵ected. It was possible to take the divergence of Eq.

(9) to find the wave equation,

r2 [[K]r ·U] + [⇢]!2r ·U = 0. (27)

Expressing the displacement in terms of potentials,

U = r�+r⇥ , (28)
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the wave equation becomes

[K]r2�+ [⇢]!2� = 0, (29)

where

� =

2

64
�
u

�
w

3

75 . (30)

This means that the moduli variations do not lead to mode conversion between the com-

pressional and shear waves and a simplified version of the poroelastic Green’s function can

be used.

In the case of porosity variations, the wave equation cannot be reduced to Eq. (27)

unless

r�� ⇡ 0, (31)

in which case r [⇢] = 0. When Eq. (31) is not used, the full poroelastic Green’s function is

necessary and energy can be scattered into both the compressional and shear waves. This

yields a much more complicated wave equation. For a sand sediment there is no appreciable

di↵erence in the attenuation when the approximation above is used9. Since we are interested

in the attenuation of a sand sediment, we will proceed by assuming that the condition given

by Eq. (31) is valid. This will be revisited in Appendix ?? where we give the full solution

to the EDFM perturbation equation.

With this assumption, we can apply perturbation theory to the wave equation for the

scalar potential, Eq. (29), which we will write as

L ([K] , [⇢])� = 0. (32)

Substitution of the expanded matrices produces

(L
0

+ L
1

+ L
2

+ . . . )� = 0, (33)

where L
0

� = 0 is the homogeneous wave equation,

L
1

� = [FK1] ��r2�+ [F
⇢1] ��!

2�, (34)
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and

L
2

� =
1

2

�
[FK2] ��

2r2�+ [F
⇢2] ��

2!2�
�
. (35)

By assuming the propagating field is the sum of a scattered, incoherent component and a

coherent component, the wave equation for the mean propagating field in the heterogeneous

medium can be expressed to second order as,

L
0

h� (r)i

+

⌧
L
1

(r)

Z
[G (r, r0)] L

1

(r0) h� (r0)i d3r0
�

+ hL
2

(r) h� (r)ii = 0, (36)

where

[G (r, r0)] =
2X

n=1

[G
n

] k2

n

g
n

(r, r0) (37)

is the Biot Green’s function for a compressional point source, n = 1 and 2 correspond to the

fast and slow compressional waves, [G
n

] is given in Eq. (A4) and (A5) of Ref. 8, and

g
n

(r, r0) =
eikn|r�r0|

4⇡ |r� r0| (38)

is the scalar Green’s function. This expression was derived for a poroelastic medium for the

full vector displacement in Ref. 8 and it is straightforward to show that Eq. (36) is the

appropriate expression for the coherent scalar potential.

Using Eq. (34), the second term in Eq. (36) becomes

⌧
L
1

(r)

Z
[G (r, r0)] L

1

(r0) h� (r0)i d3r0
�

= [FK1]
2X

n=1

[G
n

] k2

n

[FK1]

Z
r2g

n

(R)C(R)r02 h� (r0)i d3r0

+ [FK1]
2X

n=1

[G
n

] k2

n

[F
⇢1]!

2

Z
r2g

n

(R)C(R) h� (r0)i d3r0

+ [F
⇢1]

2X

n=1

[G
n

] k2

n

[FK1]!
2

Z
g
n

(R)C(R)r02 h� (r0)i d3r0

+ [F
⇢1]

2X

n=1

[G
n

] k2

n

[F
⇢1]!

4

Z
g
n

(R)C(R) h� (r0)i d3r0, (39)
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where C (r, r0) = h�� (r) �� (r0)i since the mean is taken only over the product of the porosity

variations. If we assume that the variations in the porosity are statistically homogeneous

(spatially stationary) and isotropic, then the covariance should depend only on the distance

R = |r� r0| and C (r, r0) = C (R).

Using the inhomogeneous wave equation for the scalar Green’s function,

r2g
n

(R) = �k2

n

g
n

(R)� � (R) , (40)

and assuming a plane wave solution for the mean potential,

h� (r)i = Aeik·r, (41)

the expression in Eq. (39) becomes

⌧
L
1

(r)

Z
[G (r, r0)] L

1

(r0) h� (r0)i d3r0
�

=

"
[FK1]

2X

n=1

[G
n

] k4

n

�
[FK1] k

2 � [F
⇢1]!

2

�

� [F
⇢1]

2X

n=1

[G
n

] k2

n

�
[FK1]!

2k2 + [F
⇢1]!

4

�
#
I
n

+ [FK1]
2X

n=1

[G
n

] k2

n

�
[FK1] k

2 � [F
⇢1]!

2

�
�2 h�i , (42)

where �2 = C (0) is the variance of the porosity variations and

I
n

=

Z
g
n

(R)C (R) h� (r0)i d3r0. (43)

The third term in Eq. (36) can be written using Eq. (35) as

hL
2

(r) h� (r)ii = 1

2

�
[FK2] k

2 + [F
⇢2]!

2

�
�2 h�i , (44)

and the wave equation for the mean scalar field can be written as

�k2 [Ke↵ ] h�i+ !2 [⇢e↵ ] h�i = 0, (45)
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where the e↵ective modulus and porosity matrices are

[Ke↵ ] = [K
0

]

�
2X

n=1

�
[FK1] k

2

n

� [F
⇢1]!

2

�
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] k2

n

[FK1] In

�
✓
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2
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◆
�2 (46)

and

[⇢e↵ ] = [⇢
0

]

�
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◆
�2. (47)

We have also used the relationship

2X

n=1

[G
n

] k2

n

= [K
0

]�1 . (48)

The integral in [Ke↵ ] and [⇢e↵ ] given by Eq. (43) can be partially solved by separating it

into its radial and surface components,

I
n

=

Z
g
n

(R)C (R)

Z
e�ik·RdSdR, (49)

and the integration with respect to dS can be performed,

Z
e�ik·RdS =

4⇡R

k
sin kR. (50)

Substituting this result back into Eq. (49) and substituting the expression in Eq. (38) for

the scalar green’s function, g
n

(R), the final integral is

I
n

=
1

k

Z 1

0

eiknRC (R) sin (kR) dR. (51)

With this expression for the integral, the solution to Eq. (45)-(47) yields the wave number

for the mean coherent fast compressional wave propagating in an inhomogeneous poroelastic

medium.
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B. Perturbation theory applied to EDFM

For propagation in a random medium described by the EDFM, we expand the e↵ective

compressibility and density as Taylor series about �� = 0,

⇢
eff

= ⇢
0

+ F
⇢1

�� +
1

2
F
⇢2

(52)

and


eff

= 
0

+ F
1

��, (53)

where

F
⇢n

=
@n⇢

0

@�n

(54)

and

F
n

=
@n

0

@�n

. (55)

Note that F
n

= 0 for n > 1.

We are now looking for the perturbation solution to the heterogeneous wave equation,

(L
0

+ L
1

+ L
2

) p = 0, (56)

where L
0

p = 0 is the homogenous wave equation,

L
1

= k2

0

(F
⇢1

+ F
1

) �� (57)

and

L
2

= k2

0

✓
F
⇢1

F
1

+
1

2
F
⇢2

◆
��2. (58)

Using the scalar wave equation for the mean pressure given in Eq. (14) in Ref. 13, we can

follow a similar procedure to that used in the derivation of the Biot theory result. Since for

the EDFM we are dealing with only a single scalar field and not the vector of fields in Eq.

(30), we can take the further step of solving for the e↵ective wavenumber,

k2 = k2

0

�
1 + F

2

�2

�
+ F 2

1

k4

0

I
0

, (59)
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where

I
0

=
1

k

Z 1

0

eik0RC (R) sin (kR) dR, (60)

F
1

= F
⇢1

+ F
1

, and F
2

= F
⇢1

F
1

+ 1

2

F
⇢2

.

For propagation through a random fluid medium, Rytov et al derived an approximation

for the mean Green’s function (Eq. (4.46) in Ref. 11). This expression contains an integral,

the integrand of which yields a wavenumber equation that is identical to Eq. (59) to first

order,

k2 = k2

0

+
k4

0

k

Z 1

0

eik0R (R) sin (kR) dR, (61)

where  (R) = F 2

1

C (R). The discussion of the solution to this equation given in Rytov et

al and elsewhere will inform our examination of the solution for a poroelastic medium.

Before examining solutions to the perturbation wave equations, we will examine the

assumption r�� ⇡ 0 and consider under what circumstances this approximation is valid.

For a fluid medium, we can relate the attenuation to the total scattering cross-section14,15,

2Im [k � k
0

] = �
tv

=

Z

4⇡

�
v

d!, (62)

where the di↵erential cross-section for volume scattering due to heterogeneities in the poros-

ity is

�
v

=
⇡

2

�
F
1

k2

0

+ F
�1

(k
i

· k
s

)
�
2

W (k
d

) , (63)

where k
d

= 2Re [k
0

] sin (✓/2) is the Bragg wavenumber. The compressibility fluctuations

produce monopole scattering while the r�� term manifests in dipole scattering. As we will

see in the next section, for an exponential correlation function, the power spectral density

W (k
d

) has the form given by Eq. (65). When (k
0

L)2 � 1, the di↵erential cross-section

peaks in the forward-scattering direction (✓ = 0) and the dipole term becomes k
i

· k
s

= k2

0

.

This is equivalent to assuming r�� ⇡ 0. Thus the assumption is therefore valid when

(k
0

L)2 � 1. For all of the cases examined in the following, this condition is satisfied.
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FIG. 1. Examples of the (a) sound speed ratio and (b) attenuation for the SAX04 sediment

with porosity heterogeneities modeled using perturbation theory. The statistics of the het-

erogeneities are described by exponential correlation functions with (dashed line) L = 0.6

m and � = 0.042�, (dashed-dotted line) L = 0.1 m and � = 0.05�, and (dotted line) L =

0.6 m and � = 0.008�. Also shown is the sound speed ratio and attenuation for the unper-

turbed medium (solid line). In (b) the di↵erences between the perturbed and unperturbed

attenuations are shown as the gray lines.
1518



IV. EXPONENTIAL CORRELATION FUNCTION

In order to find a wavenumber solution to either Eq. (45) or (59), the integral given in

Eq. (51) must be solved for a given correlation function. We will begin by considering the

well-known exponential correlation function,

C
exp

(R) = �2e�
R
L , (64)

where L is the correlation radius. This function has the corresponding power spectrum,

W (k) =
�2

⇡2

L3

(1 + k2L2)2
, (65)

that has a constant value for kL ⌧ 1 and goes as k�4 for kL � 1.

With this correlation function, the integrals in Eq. (51) and (60) have exact solutions:

I
n

=
�2L2

(1� ik
n

L)2 + k2L2

(66)

for Biot theory and

I
0

= I
exp

=
�2L2

(1� ik
0

L)2 + k2L2

(67)

for the EDFM. Since the integrals in Eq. (66) are themselves a function of the wavenumber,

the Biot theory wave equation must be solved using a root-finding algorithm. This is not

the case for EDFM where the equation can be written as a quadratic.

Taking the limit L ! 0 produces a medium where the variations are almost entirely

uncorrelated. In this case, the integrals in Eq. (66) and Eq. (67) both go to zero. The

e↵ective modulus and porosity matrices then reduce to

[Ke↵ ] = [K
0

]

�
✓
[FK1] [K0

]�1 [FK1]�
1

2
[FK2]

◆
�2 (68)

and

[⇢e↵ ] = [⇢
0

]

�
✓
[FK1] [K0

]�1 [F
⇢1]�

1

2
[F

⇢2]

◆
�2. (69)
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In Appendix B of Ref. 8, we showed that in the case of frame modulus variations, the

expression for [K
eff

] reduces to the e↵ective response of a random poroelastic medium

under static compression. The elastic response was dominated by the weaker elements and

this “softening” had the e↵ect of lowering the sound speed across all frequencies.

A similar analysis can be performed here to show that the e↵ective moduli given above

can be found by expanding

[K
eff

]�1 [⇢
eff

] =
⌦
[K (r)]�1 [⇢ (r)]

↵
(70)

about � (r) = �
0

. The moduli are dominated by the weaker and less dense regions in the

medium with the density variations dominating the response. The net e↵ect is to increase

the sound speed. For the values of the variance considered here, this increase is slight and

plays no significant role in any subsequent data/model comparisons.

Figure 1 shows the sound speed ratio and attenuation calculated using the Biot theory

perturbation wave equation for several values of �2 and L using the sediment parameters

given in Table I. Below a transition frequency, f
e

, the sound speeds approximately follow

the unperturbed sound speed while the attenuation contribution due to scattering increases

as f 2. At f
e

, the sound speed increases abruptly, while excess attenuation becomes constant.

This transition frequency can be related to the correlation radius and variance according to

1

4
|k

e

|2 L2

�2

�2

0

⇡ 1, (71)

where k
e

is the unperturbed fast compressional wave number corresponding to the transition

frequency, while ↵ /
p
L� at the transition.

When perturbation theory was used previously to account for scattering losses in a

medium with variations in the frame modulus, the size of the variations had to be extremely

large (�
bb

> 75%) to produce even a minor increase in attenuation. As shown in Fig. 1, small

variations in the porosity (� < 5%) can produce a significant increase in the attenuation.

For the EDFM, the wavenumber equation can be solved analytically for the e↵ective

wavenumber when the exponential correlation function is used. The wavenumber equation

can be written as a quadratic in k2 with the solutions
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k2 =

✓
k2

e

⌦� ⇤2

2L2

◆⇣
1±

p
1 + 4k2

e

L2⇥
⌘
, (72)

where

⇥ =
⌦⇤2 + F 2

1

�2k2

e

L2

(⇤2 � ⌦k2

e

L2)2
, (73)

⇤ = (1� ik
e

L) , (74)

and

⌦ =
�
1 + F

2

�2

�
. (75)

The root corresponding to the plus sign in Eq. (72) reduces to k2 = k2

e

(1 + F
2

�2) as ! ! 0

and produces the curve shown in Fig. 2.

As discussed in Section III, this solution reduces to the solution given by Rytov when

k
e

= k
f

and F
2

= 0. The roots of the wavenumber equation for that case are discussed

extensively by Calvet and Margerin16. For the fluid case, they show that at low frequencies

the sound speeds are nearly equal but diverge at high frequencies. The attenuation of the

roots are nearly equal at high frequencies with one root that goes to zero as ! ! 0 while the

other root approaches a constant value of ↵ = L�1. The solutions in Eq. (72) for the EDFM

wavenumber equation behave similarly as do the solutions for the Biot perturbation wave

equation. In both cases, we have chosen to focus on the root which most closely matches

the unperturbed solution at low frequencies.

The e↵ective density fluid model was developed as a simpler alternative to the full

Biot theory when the frame moduli were much smaller then the grain and fluid moduli10.

For the SAX99 data, for example, the EDFM was able to fit the measured data with the

same accuracy as Biot theory3. Likewise in Fig. 2 the perturbation solution using EDFM

approximates the Biot solution for the attenuation and with a minor deviation for the sound

speed at high frequencies. For this choice of parameters, the error using EDFM at f = 1

MHz is 0.3% with comparable errors for other choices of parameters. Since for a sand

sediment, the EDFM does not require that we solve a matrix equation and approximates
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FIG. 2. Comparison of the (a) sound speed ratio and (b) attenuation for a heterogenous

poroelastic medium modeled using perturbation theory applied to Biot Theory (dashed line)

and the EDFM (dotted line). Also shown are the unperturbed sound speed and attenuation

for Biot Theory (solid line) and the EDFM (dashed-dotted line).
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the Biot theory solution, we will focus on the EDFM perturbation equation in the subsequent

sections.

While an analytic solution to the perturbation equation can be found when using the

exponential correlation function, the resulting sound speed and attenuation does not match

the values measured in-situ or in the laboratory. The attenution due to scattering shown

in Fig. 1 combines with the intrisic attenuation to produce a region that transitions from

↵ /
p
f to ↵ / f2 before returning to the intrinsic result. During this transition, there is a

region in which the attenuation has a linear frequency dependence but it is confined to a very

narrow band that would not fit the measured values. For scattering from heterogeneities

to be a viable loss mechanism, a di↵erent statistical description of the medium is required.

Ideally this description would come from measurements of the sediment structure, but for

the following we will attempt to find a correlation function or spectral strength that can fit

the data.

V. SUMMED EXPONENTIAL CORRELATION

At this point it would be logical to examine other common correlation functions or

power spectra such as the von Karman power spectrum. For these more general spectra, the

integral in the EDFM wave equation does not have a simple analytical solution. Solutions to

the wavenumber equation would require that first the integral and then the wave equation

be solved numerically.

To avoid this complication, we will consider instead a generalization of the exponential

correlation function,

C
m

(R) = A
m

Z
L1

L0

Lme�
R
L dL, (76)

where

A
m

=
�2

Lm+1

1

� Lm+1

0

(77)

is chosen such that C
m

(0) = �2. The integral in Eq. (60) now becomes

I
m

= A
m

Z
L1

L0

Lm+2

(1� ik
0

L)2 + k2L2

dL. (78)
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FIG. 3. (a) Power spectra calculated using Eq. (79) for m = �1.5 (dashed line), m = �2.0

(dasd-dot line), and m = �2.5 (dotted line) with L
0

= 1 mm, L
1

= 1 m, and � = 0.15�.

(b) Attenuation for sand sediment with porosity variations described by the power spectra

given in (a) and the sediment properties given in Table I.
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FIG. 4. Spectral slope, �, as a function of m for the power spectrum given by Eq. (79)

when L
0

⌧ k ⌧ L
1

.

The integration is now performed over a finite interval with a non-oscillating integrand. As

will be shown below, it is straightforward to approximate this integral as a series.

To understand this choice of correlation function, consider the corresponding power

spectrum,

W
m

(k) = A
m

m+ 1

⇡2

Z
L1

L0

Lm+3

(1 + (kL)2)2
dL. (79)

In the limit k ⌧ L�1

0

, L�1

1

, the power spectrum becomes

W
m

(k) =
�2

⇡2

m+ 1

m+ 2

Lm+4

1

� Lm+4

0

Lm+1

1

� Lm+1

0

, (80)

while in the limit of k � L�1

0

, L�1

1

, the power spectrum is

W
m

(k) =
�2

⇡2

m+ 1

m

Lm

1

� Lm

0

Lm+1

1

� Lm+1

0

1

k4

. (81)

The asymptotics of this spectrum reflect those of the exponential correlation function in the

integrand. For values of the wavenumber such that L�1

0

⌧ k ⌧ L�1

1

, the power spectrum
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has a constant slope, �, where �4 < � < 0 (Fig. 3(a)). This dependence of the spectral slope

on m is shown in Fig. 4 where the spectral slope can be well approximated by � = m+ 3.

To appreciate the utility of the power spectrum given in Eq. (79), we will compare it to

the von Kàrmàn spectrum,

W
⌫

(k) =
L3�

�
⌫ + 3

2

�

⇡3/2� (⌫) (1 + k2L2)
�3
2

, (82)

where 0 < ⌫  1 and �
3

= 2⌫ + 3. When ⌫ = 1/2, this power spectrum reduces to that of

the exponential correlation function with a spectrum proportional to k�4. As ⌫ ! 0, the

spectrum approaches k�3. However, any spectrum that goes as k� with � > �3 as k ! 1

is unphysical since �2 =
R1
�1 W (k) dk = 1.

An examination of Fig. 4 shows that this new spectrum can approximate the von

Kàrmàn spectrum for 0 < ⌫  1/2 over an arbitrary range of wavenumbers by choosing m

such that �1 < m  1. This greatly simplifies the evaluation of Eq. (60) for the von Kàrmàn

correlation function. It is also possible to determine solutions to the perturbation wave

equation when the fluctation power spectral slope exceeds � = �3. The power spectrum

given by Eq. (79) can produce a spectral slope that exceeds this limit over an arbitrary

range of wavenumbers since W (k ! 1) / k�4. As we will see, this becomes important to

produce a linear attenuation.

To find solutions to the EDFM perturbation wave equation, the integral given by Eq.

(78) must be evaluated. The approach taken here is to approximate the correlation function,

C
m

, as a series. Using a linear spacing in L, the correlation function becomes

C
m1

(R) =
�2

P
N

n=0

Lm

n

NX

n=0

Lm

n

e�
R
Ln (83)

where L
n

= L
0

+ n�L. An alternative way to approximate the integral is to choose the

values of L
n

such that they are logarithmically distributed. In this case,

C
m2

(R) =
�2

P
N

n=0

Lm+1

n

NX

n=0

Lm+1

n

e�
R
Ln , (84)

where L
n

= L
0

10n� and � determines the size of the logarithmic spacing. This approxima-

tion of the correlation function converges faster than the linear series since we are calculating
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the sound speed and attenuation for frequencies that span several decades.

Using the series approximation given by Eq. (84), the integral in Eq. (60) becomes

I
0

=
�2

P
N

n=0

Lm+1

n

NX

n=0

Lm+1

n

I
exp

(L
n

) . (85)

where I
exp

is given in Eq. (67). The wave equation, Eq. (59), can now be solved numer-

ically to determine the e↵ective wavenumbers. The attenuation for media with porosity

fluctuations described by the power spectra shown in Fig. 1(a) are shown in Fig. 1(b).

The scattering contributions to the attenuation are again determined by subtracting

the unperturbed attenuation from the perturbation theory result. For the examples shown,

these scattering contributions each have a power-law frequency dependence which varies

from f 1.3 for m = �1.5 to f 2.2 for m = �2.5. The frequency dependence across m were

calculated for the SAX04 sediment parameters and the powers are shown in Fig. 5. While

these slopes are steeper than the linear frequency dependence shown in the data, the total

attenuation is the sum of the intrinsic and scattering attenuations which produces a slope

that transitions from f1/5 to that of the scattering contribution.

In Fig. 5 the slope of the scattering contribution varies from 0.5 with m ⇡ �0.5 to

2.6 at m = �5. This lower value corresponds to the slope of the intrinsic attenuation

and for this value of m the power spectrum approximates the von Kàrmàn spectrum with

⌫ ⇡ 0.2. At this m, the total attenuation goes as f1/2, well below the linear attenuation.

For m < �2.2, the power law exponent is larger then the value found for the exponential

correlation function. With the correlation function given by Eq. (76) or the summation

approximation given by Eq. (84), it is possible to model the frequency dependence of the

attenuation for a broad range of exponents, beyond that which is accessible using the von

Kàrmàn or exponential correlation functions.

VI. MODELING THE SAX04 DATA

Application of the perturbation wave equation, either the full Biot Theory or EDFM

version, requires knowledge of the statistics of the heterogeneities in the sediment. In the
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FIG. 5. Exponent for the scattering contribution to the attenuation determined by solving

the EDFM perturbation wave equation with L
0

= 1 mm, L
1

= 1 m, and � = 0.20�. The

scattering contribution is the di↵erence between the attenuation in a heterogenous medium

and the attenuation in a medium with no variation in porosity.

previous section, we presented a covariance function and associated power spectrum that

can approximate the von Kàrmàn spectra as well as other spectra with shallower spectral

exponents. This covariance function has four parameters that must be determined for a

given sediment: the weighting exponent m, the covariance �, and the upper and lower

length scales, L
0

and L
1

. One approach to determining these values is to find the best fit to

the data as is typically done for propagation models based on grain contact friction or flow.

This is necessary for the contact models since the measurable parameters required for these

models remain largely unknown. Since the scattering loss model presented here relies on

knowledge of the heterogeneity spectrum, we will proceed instead by considering a data set

where this spectrum has been measured in addition to the necessary poroelastic parameters.

During SAX04 there was an extensive e↵ort to measure sediment properties important to

scattering from the seabed. As part of this e↵ort, the sediment heterogeneity was measured
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FIG. 6. The density fluctuation power spectrum measured during SAX0417 (black line) and

the approximate power spectrum determined using Eq. (79).

through the collection of diver cores and the deployment of a conductivity probe17. The

diver cores were analyzed by either sectioning the cores and determining the porosity by

measuring the wet and dry wet of each section or by mapping the density within the core

with a computed tomography (CT) scanner. The conductivity probe was used to measure the

formation factor in the sediment in situ which could then be used to determine the porosity.

Each of these techniques were used to provide information about the density fluctuations

at di↵erent scales in the sand sediment and, once sample size bias was corrected, it was

possible to find a single power spectrum that incorporated each of these measurements.

While the conductivity probe deployment and the mass analysis of the diver cores were

able to collect data on the porosity fluctuations directly, the data was converted into density

fluctuations by application of Eq. (7) since this was the input required for scattering from

the sediment. To apply these measurements to the EDFM perturbation wave equation, we

must first convert the density fluctuation spectrum back into a spectrum for the porosity

fluctuations. We will assume that the fluctuations in density determined using the CT
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scanner were entirely due to fluctuations in porosity.

The power spectrum for the mean normalized density fluctuations was written as a von

Kàrmàn spectrum,

W (k) =
w

3

(k2 + L�2)
�3
2

, (86)

where w
3

= 2.0⇥ 10�5 cm�0.1, �
3

= 3.1, and L = 1.05 cm. The porosity fluctuations can be

related to the density fluctuations by

�� =

✓
@⇢

@�

◆�1

�⇢ (87)

such that the variance becomes

�2

�

=

✓
@⇢

@�

◆�2

�2

⇢

. (88)

Using Eq. (82), we can relate w
3

to the variance of the density fluctuations to find a

coe�cient of variation (CV). The CV is defined as the standard deviation divided by the

mean and multiplied by 100. For the density fluctuations we find that the CV is 4.95%.

Using Eq. (88) the CV for the porosity fluctuations is 16.31%.

With the relationship for the variance given by Eq. (88), the spectral strength for the

porosity fluctuations becomes w
3�

= 5.07�5 m�0.1 which corresponds to �2 = (0.1631�
0

)2

while the other spectral parameters remain unchanged. We can approximate this spectrum

using the results of the previous section by choosing the upper limit of the integral to be

L
1

= L. The value for weighting exponent can be determined using the approximate linear

relation to find m = �
3

+3. The voxel size of the highest resolution CT data was 0.095 mm

so the value for the lower limit of the integral will be chosen to be smaller then this voxel

size, L
0

= 10�5 m.

The approximate power spectrum using the parameters discussed above is compared

to the true power spectrum in Fig. 6. Note that while the two spectra deviate at high

wavenumbers and the approximation may be improved through a best fit to measured data,

we will proceed with this approximation since it provides a means of deriving the parameters

for the covariance function in Eq. (76) directly from the data.
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FIG. 7. The (a) sound speed ratio and (b) attenuation measured during SAX04 compared

to the EDFM perturbation theory result (dash-dotted line) using the power spectrum for

porosity fluctuations shown in Fig. 6 and the sediment parameters in Table I. Also shown

is the unperturbed EDFM result (solid line). The markers correspond to the markers used

by Hefner et al.5 and the measurements are explained in detail there.
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Using these parameters for the power spectrum (m, �, L
0

, and L
1

), the sound speed

and attenuation for the EDFM can be calculated using Eq. (59) and Eq. (84). Again the

choice of the logrithmically spaced series approximation is improve convergence and for the

calculations done here, � = 0.1. The results of the calculation are compared in Fig. 7 to

the sound speed and attenuation measured during SAX04. For this calculation there are no

free parameters. For the sound speed ratio, the relatively large CV produces a significant

increase over the unperturbed result for all frequencies. This is due to the weakening of

the medium as discussed in Section IV. Despite this increase, the model still captures the

dispersion and matches the data.

The model also matches the attenuation data in the high-frequency regime where the

measurements deviate from the unperturbed results. For this choice of m, the scattering

contribution follows an f0.8 dependence. While this is close to an f 1 dependence, the com-

bination of the intrinsic and scattering contributions produce a net dependence that is less

that f 1. This data set, however, does not follow a linear frequency dependence and this

may be related to possible sorting and resettling of the sediment caused by the passage of

Hurricane Ivan just prior to the start of the experiment.

VII. DISCUSSION

The sound speed and attenuation data coupled with the complete set of environmental

measurements provided a unique opportunity to test the scattering loss mechanism. Un-

fortunately these opportunities are rare due to the range of measurements and the breadth

of technical know-how required to collect that data. More often than not, a subset of the

required sediment parameters are collected and the remaining unknowns are either chosen

to conform to previous measured values or determined from a fit to the data. Likewise for

measurements of heterogeneity which are often collected at length scales much larger then

those required for the high-frequency propagation modeling presented here.

Despite this lack of knowledge, by incorporating scattering losses into the poroelastic
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equations, we have constrained the model in a way that sets it apart from those based on

grain contact dynamics. Heterogeneities in the sediment porosity that are large enough

to produce significant scattering losses should also produce significant scattering from the

sediment interface. This would mean that a fluctuation power spectrum that is chosen to fit

a given sound speed and attenuation measurement should also fit measurements of sediment

backscattering strength. For this comparison to be meaningful, there would have to be no

other dominant scattering mechanisms such as shells or interface roughness. There are data

sets available for this comparison and with the propagation theory on a firm footing18, future

work will focus on performing this type of comparison.

Another issue to be addressed is the need to solve the wave equations numerically. While

the physics might be correctly captured, this introduces an additional complication when

trying to apply this theory in other acoustic models or techniques when the heterogeneity

statistics are an unknown parameter. This would be particularly true in remote sensing

inversions where the scattering response of the sediment was used to determine key sediment

properties. This suggests the need for approximations to the wave number solution that

simplfy the application of the theory.

VIII. CONCLUSIONS

To explain the anomalous high-frequency attenuation observed in both ocean and labora-

tory sand sediments, we introduced scattering losses to Biot Theory and EDFM by applying

perturbation theory. Unlike the previous study which found that heterogeneities in the bulk

frame modulus were too weak to produce significant losses, small variations in the porosity

can significantly increase the attenuation. While perturbation theory was applied to both

Biot’s poroelastic equations and the e↵ective medium fluid model, the EDFM scattering

result provides a good approximation to the full Biot Theory as it does for a homogeneous

sand sediment. Since the integral in the scattering equations has an analytic solution for

the exponential correlation function, a generalization of the exponential function was intro-
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duced. This function can approximate both the von Kàrmàn correlation function as well as

other functions whose associated power spectra have shallower spectral slopes. With this

correlation function, the perturbation EDFM model can produce attenuation with frequency

dependence which range from f 1/2 to f 5/2.

Using the sediment parameters and heterogeneity spectrum that were measured during

SAX04, the sediment sound speed and attenuation predicted by the perturbation EDFM

successfully models the data collected during the experiment. This model succeeds without

any free parameters. While this data set is unique in that all of the necessary sediment

properties were known, most measurements of sound speed and attenuation are not collected

with collocated environmental measurements. The heterogenity statistics in these situations

may be constrained by measurements of volume scattering from the sediment since the

underlying physics are the same. Future work will explore this connection.
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TABLE I. Parameters used in modeling SAX04 data3. The parameters chosen were deter-

mined from best fits of unperturbed Biot Theory to the data, but all parameters except the

SAX04 porosity fall within the measurement uncertainties.

Parameter SAX04

Porosity (�) 0.388

Mass density of sand grains (⇢
g

) 2660 kg/m3

Mass density of water (⇢
f

) 1024 kg/m3

Bulk modulus of sand grains (K
g

) 3.2 ⇥1010 Pa

Bulk modulus of frame (K
b

) 4.36 ⇥107 Pa

Shear modulus of frame (µ
b

) 2.92 ⇥107 Pa

Bulk modulus of water (K
f

) 2.40 ⇥109 Pa

Viscosity (⌘) 0.00096 kg/m·s

Permeability () 3.4 ⇥10�11 m2

Tortuosity (↵) 1.41
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Measurement and modeling of sound propagation in a heterogenous sediment

Brian T. Hefner1, Darrell R. Jackson1

1Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105, USA {hefner, drj}@apl.washington.edu

A sand sediment is inherently heterogeneous due to the random packing of the sand grains. Measurements and
simulations have shown that the random packing can lead to the formation of force chains and hence hetero-
geneities of the frame moduli. X-ray tomography also indicates the presence of pore structure heterogeneities
which may lead to variations in the porosity and permeability of the sediment. Heterogeneities in any of these
parameters can lead to scattering of the Biot fast compressional wave into incoherent fast, slow, or shear waves
producing an increase in attenuation. In order to account for this loss, perturbation theory has been applied
to Biot’s poroelastic equations to develop a general theory of sound propagation in a randomly varying sand
sediment. In this paper, the theory is applied to both bulk frame modulus and porosity heterogeneities. The
implications of scattering loss on sound speed and attenuation measurements are also examined. In these mea-
surements, the coherent and incoherent fields are typically present when autocorrelation or spectral techniques
are used to process the data. The presence of the incoherent field may therefore lead to incorrect estimations of
the sound speed and attenuation. (Work supported by the US Office of Naval Research).

1 Introduction

Over the last two decades, there has been an increasing in-
terest in the physics of randomly packed granular materi-
als. Research into these materials has uncovered a number
of important consequences that follow from the random ar-
rangements of the grains, particularly the formation of force
chains[1] and the presence of local fluctuations in the den-
sity of the material[2]. While a majority of this research
has focused on dry granular media, the results are equally
applicable to saturated granular media such as a sand sedi-
ment. As a consequence of the random packing of the sand
sediment, the presence of force chains should lead to het-
erogeneities in the bulk moduli of the sediment. The local
density fluctuations should manifest in heterogeneities in the
porosity, permeability, and tortuosity of the sediment since
each of these parameters depend on the structure of the sed-
iments pore space.
For a Biot medium, these heterogeneities can lead to scat-
tering from a propagating fast Biot wave into incoherent
fast, slow, and shear waves. This conversion of energy from
the coherent field into incoherent will lead to an increase in
the attenuation of the coherent field. This may explain the
increased attenuation at high frequencies observed during
the sediment acoustics experiments in 1999 (SAX99)[3] and
2004 (SAX04)[4] as well as in laboratory experiments[5].
By applying perturbation theory to Biot’s poroelastic equa-
tions, wave equations have been developed which account
for these scattering losses due to fluctuations in the frame
bulk modulus or the porosity of the sediment.
The paper begins by briefly summarizing the application
of perturbation theory to Biot’s poroelastic equations. The
predictions of the model for a heterogenous frame modu-
lus are considered for both a sand sediment and a sintered
glass bead medium. The model is then applied to sand sedi-
ment with a heterogenous porosity. The implications of this

model for the measurement of attenuation are considered in
the last section.

2 Perturbation Theory

A brief summary of the results of applying perturbation the-
ory to Biot’s poroelastic equations is given here while a de-
tailed derivation can be found in [6]. The starting point for
the theory are Biot’s poroelastic equations consolidated into
a single matrix equation as,

∇ ([K]∇ ·U) − [µ̃0]∇× (∇× U) + [ρ0]ω
2
U = 0, (1)

where
[K] =

[

H −C
C −M

]

(2)

is the matrix of Biot coefficients (see Ref. [3]),

[ρ] =

[

ρ −ρf

ρf −ρ∗

]

, (3)

is the density matrix,

[µ̃] =

[

µb 0
0 0

]

, (4)

is the frame shear modulus matrix, and

U =

[

u

w

]

, (5)

is the displacement field of the solid frame u and the relative
displacement of the pore fluid to the frame w = β (u− uf ).
In the equations above, ω = 2πf where f is the frequency,
ρf is the density of the pore fluid, ρg is the sediment particle
mass density, ρ = (1 − β) ρg + βρf is the mean sediment
density, β is the porosity,

ρ∗ =
αρf

β
+

iFη

κω
, (6)
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α is the tortuosity, κ is the permeability, η is the pore fluid
viscosity, and the parameter F represents the deviation from
Poiseuille flow as frequency increases. The expression for
F is given and discussed in Ref. [3]. Note that the Biot
coefficients depend on the frame bulk modulus, Kb, while
both [K] and [ρ] depend on the porosity.
We consider a poroelastic medium in which the sediment
parameter of interest varies randomly with position. For ex-
ample, for the frame bulk modulus,

Kb (r) = Kb0 + δKb (r) , (7)

where Kb0 = 〈Kb (r)〉, δKb (r) is the local fluctuation of
the bulk modulus, and 〈δKb (r)〉 = 0. To account for these
random variations, we expand the matrices in Eq. (1) as
a Taylor series about the mean value. Again, for the bulk
modulus variation,

[K] = [K0] + [Fb1] δKb +
1

2
[Fb2] δK

2
b + . . . , (8)

where [K0] is the homogenous Biot coefficient matrix and

[Fbn] =
∂n [K0]

∂Kn
b

. (9)

If the heterogenous poroelastic equation is rewritten as

L ·U = 0, (10)

substitution of the expanded expressions yields,

(L0 + L1 + L2 + . . . ) ·U = 0, (11)

where L0 · U = 0 is the homogenous poroelastic equation.
The displacement fields can be expanded as

U = 〈U〉 + Us, (12)

where 〈U〉 is the mean coherent field and Us is the incoher-
ent, scattered field for which 〈Us〉 = 0.
Substitution of Eq. (12) into Eq. (11), yields the expansion
of the poroelastic equations,

L0 · 〈U〉 + L0 · Us + L1 · 〈U〉

+ L1 · Us + L2 · 〈U〉 = 0, (13)

where we have neglected all terms higher than second order.
Since 〈L1〉 = 0, the mean of Eq. (13) yields

L0 · 〈U〉 + 〈L1 · Us〉 + 〈L2〉 · 〈U〉 = 0. (14)

Subtracting Eq. (14) from Eq. (13) and neglecting all terms
higher than first order, we find the equation for Us in terms
of 〈U〉,

L0 ·Us = −L1 · 〈U〉 . (15)

This equation can be solved using the poroelastic Green’s
tensor to yield the solution for Us,

Us (r) =

∫

G (r, r′) · L1 (r′) · 〈U (r′)〉 d3
r
′. (16)

Substituting this expression back into Eq. (14), we find the
final equation for a poroelastic wave propagating through a
heterogenous medium,

L0 (r) · 〈U (r)〉

+

〈

L1 (r) ·

∫

G (r, r′) · L1 (r′) · 〈U (r′)〉 d3
r
′

〉

+ 〈L2 (r)〉 · 〈U (r)〉 = 0. (17)

3 Bulk Modulus Variations

Application of Eq. (17) to the case of variations in the frame
bulk modulus yields a wave equation for the medium which
can be written as,

− ([Keff ] − [µ̃0])k (k · A) − k2 [µ̃0]A + [ρ0]ω
2
A = 0,

(18)
where the effective Biot coefficient is

[Keff ] = [K0]

− [Fb1]
2

∑

n=1

[Gn] [Fb1] k
4
nIn

−

(

[Fb1] [K0]
−1 [Fb1] −

1

2
[Fb2]

)

σ2
bb, (19)

and
In =

1

k

∫

∞

0
eiknRCbb (R) sin (kR)dR. (20)

In this perturbed wave equation, kn is the unperturbed wave
numbers where n = 1 and 2 is associated with the fast and
slow wave respectively and

[G1] =
[K0]

−1 − [ρ0]
−1

ω−2k2
2

k2
1 − k2

2

, (21)

[G2] =
[K0]

−1 − [ρ0]
−1

ω−2k2
1

k2
2 − k2

1

. (22)

In Eq. (20), we have assumed that the variations in the mod-
ulus are statistically homogenous (spatially stationary) and
isotropic so that the covariance of the modulus variations
should depend only on the distance R = |r − r′|. Note also
that σ2

bb = Cbb (0) =
〈

δK2
b

〉

is the variance of the perturba-
tion in the frame bulk modulus.
For the bulk modulus variations, there is scattering from the
coherent fast wave into incoherent fast and slow waves and
no scattering into incoherent shear waves. Also the coherent
shear wave is unaffected by the bulk modulus variations.
Before considering results for a specific covariance function,
some general properties of the the effective Biot coefficient
matrix can be identified. When the variance of the pertur-
bation goes to zero, the matrix reduces to the homogenous
result, [K0], as one would expect. The second term in Eq.
(19) depends on the form of the covariance function and cap-
tures the effects of scattering on the coherent field. The third
term does not depend on the frequency and scales only with
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Parameter SAX99 Sand Sintered Glass Beads
β 0.385 0.37
ρg 2690 kg/m3 2530 kg/m3

ρf 1023 kg/m3 1023 kg/m3

Kg 3.2 × 1010 Pa 4.3 × 1010 Pa
Kb 4.36 × 107 Pa 4.23 × 109 Pa
µb 2.92 × 107 Pa 7.94 × 109 Pa
Kf 2.395 × 109 Pa 2.395× 109 Pa
η 0.00105 kg/m·s 0.00105 kg/m·s
κ 2.5 × 10−11 m2 4.43 × 10−11 m2

α 1.35 1.60

Table 1: Parameters used in the examples.

the variance of the perturbation. This is the softening of the
medium due to the modulus variations and leads to a de-
crease in sound speed over all frequencies. This is discussed
in more detail in the Appendix of Ref. [6].
The theory given in Eq. (1) accounts for only the second-
order scattering contributions to the mean propagating field.
For large fluctuations in the medium, it may be necessary
to account for higher-order scattering contributions. To de-
termine whether it is necessary to account these contribu-
tions, we follow the approach of Rytov[7] and use an iter-
ative method to estimate the contribution of a subset of the
higher-order scattering contributions (this is discussed in de-
tail in Ref. [6]). The condition which must be met is that
the contribution of this higher correction to the wavenum-
ber be small compared to the second order correction to the
wavenumber, which can be expressed as

∣

∣k(2) − k
∣

∣

|k − k1|
& 1, (23)

where k is the wavenumber determined from Eq. (18) and
k(2) is determined using the iterative method discussed in
Ref. [6]. Note also that, although an analytic proof of
causality is not possible, the examples below have been found
to satisfy a numerically integrated, twice-subtracted disper-
sion relation.
To determine whether variations in the frame bulk modulus
are sufficient to account for the high-frequency attenuation
observed in sand sediments, we will consider predictions of
the model using the exponential covariance function,

Cbb (R) = σ2
bbe

−R/L, (24)

for which the integral in Eq. (20) can be solved to yield,

In =
σ2

bb

(L−1 − ikn)2 + k2
, (25)

where L is the characteristic length scale of the bulk mod-
ulus variations. Note that the wavenumber which we wish
to determine is in the denominator of Eq. (25). To solve
Eq. (18), we will approximate the wavenumber in the de-
nominator of the integral by the unperturbed wavenumber,
kn.
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Figure 1: Examples of attenuation for a medium with frame
bulk modulus variations and sediment parameters corre-
sponding to (a) SAX99 sand sediment and (b) sintered
glass beads. For the SAX99 sediment, L = 1 mm and
σ2

bb = 0.73K2
b . For the sintered glass beads, L = 1.6 mm

and σ2
bb = 0.14K2

b . In each plot, the unperturbed attenua-
tion (solid line), the attenuation with scattering (long dashed
line), the attenuation contribution due to fast and slow wave
scattering (dash-dot line), and the attenuation contribution
due slow wave scattering only (short dashed line) are shown.
For the SAX99 sediment, the attenuation with scattering
comes entirely from fast to slow wave scattering.

In the examples given here, two media will be considered:
the SAX99 sand sediment and a sintered glass bead pack.
The sediment parameters for these media are given in Ta-
ble 1 and, as can be seen in the table, the most significant
difference in the material parameters is the magnitude of the
frame moduli. The bulk and shear frame moduli for the sin-
tered glass bead pack are two orders of magnitude larger
than those of the SAX99 sediment.
The attenuation determined by solving Eq. (18) using the
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parameters in Table 1 is shown in Figure 1. In these plots,
the contribution due to scattering into fast and slow waves
was determined by subtracting the attenuation when σ2

bb = 0
from predicted attenuation. The contribution to attenuation
from fast to slow wave scattering was also determined by
setting [G1] = 0 and subtracting the unperturbed attenuation
from slow wave only scattering prediction. For the SAX99
sediment, the values for L and σ2

bb were chosen to show an
increase in attenuation in the region where the attenuation
measured during SAX99 begins to deviate from Biot theory.
In order to get even this slight increase, the standard devi-
ation of the bulk modulus variations had to be increased to
σbb = 0.83Kb and, as a result, the condition in Eq. (23) has
been violated.
For the sintered glass beads, scattering creates a significant
increase in attenuation at high frequencies for a modest choice
of σ2

bb and the condition given in Eq. (23) is satisfied. In the
SAX99 sediment, the attenuation was due to scattering from
the coherent fast wave into incoherent slow waves. For the
glass beads, the slow wave scattering dominates initially but
as the frequency increases, the scattering into incoherent fast
waves becomes the dominant loss mechanism.

4 Porosity Variations

The perturbation solution given in Eq. (17) has also been
solved for a medium with varying porosity,

β (r) = 〈β〉 + δβ (r) , (26)

where 〈δβ (r)〉 = 0. In this case, both [K] and [ρ] depend
on the porosity and each must be expanded as a Taylor se-
ries. With these expansions, the resulting wave equation has
a more complicated form than was found for the bulk modu-
lus variations and hence will not be given here. In contrast to
bulk modulus result, the variations in porosity lead to scat-
tering from the coherent fast wave into incoherent fast, slow,
and shear waves. The coherent shear wave is also affected
by scattering losses, however we will only considered fast
wave propagation here.
An example of the attenuation due to porosity variations is
shown in Figure 2 again assuming an exponential covariance
function. In this example L = 2.5 mm and σbb = 0.18β and
for these a condition similar to Eq. (23) is satisfied. Causal-
ity has also been numerically confirmed. As opposed to the
bulk modulus variation results, the attenuation is dominated
by fast wave scattering. The onset of fast wave scattering
produces a transition from the f0.5 dependence predicted to
by Biot theory to an f2 dependence at very high frequen-
cies. In the transition, the attenuation is approximately lin-
ear consistent with the frequency dependence observed in
the SAX99 data. This indicates that while the bulk modulus
in a sand sediment is too weak to produce significant scat-
tering, fluctuations in parameters for which Biot theory is
more sensitive, such as porosity, may be able to account for
the increased attenuation observed in sand sediments.
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Figure 2: Example of attenuation for a medium with poros-
ity variations and sediment parameters corresponding to the
SAX99 sand sediment. In this example, L = 2.5 mm and
σ2

bb = 0.03β2. The unperturbed attenuation (solid line), the
attenuation with scattering (long dashed line), the attenua-
tion contribution due to fast and slow wave scattering (dash-
dot line), and the attenuation contribution due slow and
shear wave scattering only (short dashed line) are shown.

Since the scattering is dominated by the fast wave scatter-
ing, it is possible to approximate the perturbed poroelastic
wave equation by applying perturbation theory to the ef-
fective density fluid model (EDFM)[8]. In the EDFM, the
frame moduli are set to zero and

H = C = M =

(

(1 − β)

Kg
+

β

Kf

)−1

. (27)

This leads to a significant simplification of the poroelastic
equations and simplifies the perturbation theory solution as
well.
The dominance of the fast wave scattering also suggests a
connection between sound propagation within the sediment
and the scattering of sound from the sediment interface. For
sound incident above the critical grazing angle, heterogeneities
within the sediment can produce significant backscattering
(See [9] and references therein). Typically, perturbation the-
ory is used to predict this scattered field and, since the sed-
iment is treated as a fluid model, compressional wave scat-
tering is assumed to dominate. The dominance of fast com-
pressional wave scattering in the propagation models dis-
cussed here suggests that the mechanism responsible for the
increased attenuation may also be responsible for volume
scattering from the sediment. Experiments have recently
been conducted in order to study this hypothesis.

5 Implications for Measurements

If scattering from the coherent fast wave into incoherent
slow waves were the dominant attenuation mechanism, the
incoherent energy would be quickly dissipated due to the
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high attenuation of the slow wave. Since this is not the case,
the incoherent fast waves can have a significant effect on
a single signal transmitted between two points in the sedi-
ment. These effects were seen in the SAX99 measurements
(see Figure 5 in [3]) and to a lesser extent in the SAX04 and
laboratory measurements. The complications that these ef-
fects cause in model/data comparisons can be eliminated by
determining the mean field from a number of measurements
at different locations within the sediment. The perturbation
result in Eq. (17) predicts the wavenumber for this mean
field.
As opposed to determining the mean field through multiple
measurements in the sediment, the sound speed and attenua-
tion are usually calculated for each measurement location
and then the mean of those values are determined. How
these mean values relate to the values modeled using Eq.
(17) is unclear. To illustrate this, we will consider how these
different techniques affect the value for attenuation deter-
mined using the procedure outlined in Ref. [10].
In this procedure, an array consisting of a source and two
receivers, each at a different distance from the source, are
inserted into the sediment and a pulse is transmitted and
recorded. The array is removed from the sediment and rein-
serted at a different location. This continues until a large
number of locations are sampled. To determine the attenu-
ation, the received pulses are carefully windowed and and
filtered to isolate the first six cycles of the received pulse.
The spectral amplitudes at the frequency of interest are de-
termined and the ratio of these amplitudes becomes

Ag (ω) =

∣

∣

∣

∣

P1g (ω)

P2g (ω)

∣

∣

∣

∣

2

, (28)

where P1g (ω) and P2g (ω) are the spectral amplitudes at
the far and near receivers respectively. A similar ratio, Aw,
is taken for a set of pulses taken with the same array in the
water column. The attenuation is then determined from the
ratio of these spectral ratios,

α =
1

2d
ln

(

Aw

Ag

)

, (29)

where d is the difference in the distances between each re-
ceiver and the source.
To determine the attenuation of the coherent field, the mean
of the pulses received at each location on each receiver would
be used in Eq. (28) to determine what we will call the coher-
ent ratio Ag0. The attenuation of the coherent field is then

α0 =
1

2d
ln

(

Aw

Ag0

)

. (30)

When the spectral ratio is determined at each location, we
will assume that the affect of the incoherent field can be cap-
tured as

Agi = Ag0 + δAgi, (31)

where the index i denotes the location at which the mea-
surement was taken. We will also assume that 〈δAgi〉 = 0.

Substitution of Agi into Eq. (28) and assuming δAgi & Ag0

yields the attenuation at location i,

αi =
1

2d
ln

(

Aw

Ag0

)

−
1

2d

δAgi

Ag0
+

1

4d

δA2
gi

A2
g0

. (32)

and the mean attenuation of all the locations becomes

〈αi〉 = α0 +
1

4d

〈

δA2
gi

〉

A2
g0

. (33)

The mean attenuation is biased upward relative to the atten-
uation of the coherent field.

6 Conclusions

Perturbation theory has been applied to Biot’s poroelastic
equation to develop a wave equation which captures scat-
tering losses within the sediment up to second order. The
theory has been applied to sediments with heterogeneities in
the frame bulk modulus and the porosity. For a sand sedi-
ment, the frame modulus is too weak to produce scattering
and hence attenuation at levels observed in experiments such
as SAX99. When porosity variations are present, signifi-
cant scattering can occur for modest levels of variation and
in this case, the scattering loss is dominated by scattering
from the coherent field into incoherent fast compressional
waves. This suggests that applying perturbation theory to
the EDFM may successfully capture the observed attenua-
tion while simplifying the resulting theory.
The implications of the scattering model were also consid-
ered in the context of attenuation measurements. While a
simple example was used to illustrate the types of issues that
can arise when comparing data and models, a more care-
ful analysis of the effects of scattering on measurement of
sound speed and attenuation in the sediment is required.

7 Acknowlegdements

This work was supported by the US Office of Naval Re-
search.

References

[1] C. Liu, S.R. Nagel, D.A. Schecter, “Force fluctuations
in bead packs,” Science 269, 513-515 (1995)

[2] A.V. Anikeenko, N.N. Medvedev, “Structural and en-
tropic insights into the nature of the random-close-
packing limit,” Phys. Rev. E 31101 (2008)

[3] K. L. Williams, D. R. Jackson, E. I. Thorsos, D. Tang,
S. G. Schock, “Comparison of sound speed and attenua-
tion measured in a sandy sediment to predictions based
on the Biot theory of porous media,” IEEE J. Ocean.
Eng. 27, 413–428 (2002)

44



ECUA 2010 Istanbul Conference Hefner, Jackson

[4] B. T. Hefner, D. R. Jackson, K. L. Williams, and E. I.
Thorsos, “Mid- to High-Frequency Acoustic Penetra-
tion and Propagation Measurements in a Sandy Sedi-
ment,” IEEE J. Ocean. Eng. 34, 327–387 (2009)

[5] B. T. Hefner, K. L. Williams,“Sound speed and attenu-
ation measurements in unconsolidated glass-bead sed-
iments saturated with viscous pore fluids,” J. Acoust.
Soc. Am. 120, 2538–2549 (2006)

[6] B. T. Hefner, D. R. Jackson,“Dispersion and attenuation
due to scattering from heterogeneities of the frame bulk
modulus of a poroelastic medium,” J. Acoust. Soc. Am.
127, 3372–3384 (2010)

[7] S. M. Rytov, Y. A. Kravtsov, V. I. Tatarskii, Principles
of Statistical Radiophysics (Springer, Berlin, 1989), Vol.
4.

[8] K. L. Williams, “An effective density fluid model for
acoustic propagation in sediments derived from Biot
theory,” J. Acoust. Soc. Am. 110, 22762281 954 (2001)

[9] D. R. Jackson and M. D. Richardson, High-Frequency
Seafloor Acoustics (Springer, New York, 2006)

[10] M. J. Buckingham, M. D. Richardson, “On tone-burst
measurements of sound speed and attenuation in sandy
marine sediments,” IEEE J. Ocean. Eng. 27, 429–453
(2002)

45



High frequency measurements of backscattering from heterogeneities and discrete
scatterers in sand sediments

Brian T. Hefner1, Darrell R. Jackson1, Anatoliy N. Ivakin1, Dajun Tang1
1Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105, USA, {hefner,drj,ivakin,djtang}@apl.washington.edu

In an effort to study the importance of heterogeneities and discrete inclusions, a series of backscattering mea-
surements were made on a sand sediment in a fresh water test pond. Backscattering was measured at frequencies
from 200 to 500 kHz as a function of grazing angle. In order to reduce the role of roughness, the sediment was
artificially smoothed by divers. The residual roughness was characterized by a laser line scanner and found to be
insufficient to account for the observed backscattering. The sediment has a very narrow grain size distribution
with very few large shell fragments or other inclusions. This indicates that the predominant scattering mechanism
is volume scattering due to the presence of heterogeneities in the sediment. The backscattering measurements
are compared to the predictions of perturbation theory for a heterogenous sediment. The role of larger, discrete
scatterers was also examined by the careful addition of a layer of shell fragments to the surface of the sediment.

1 Introduction

It has generally been assumed that the roughness of the wa-
ter/sediment interface is the dominant cause of backscatter-
ing from sandy ocean sediments. For sand sediments, mea-
surements such as those made byWilliams[1] and Greenlaw[2]
have brought this assumption into question for scattering
above 100 kHz and these results indicate that a second scat-
tering mechanism may dominate at these frequencies. Sub-
sequent measurements made during SAX04[3] and in the
laboratory[4] have since supported this conclusion.
A likely candidate for this high frequency scattering mech-
anism is volume scattering, either from heterogeneities in
the sediment properties, from large scatterers such as shells
and shell hash, or from the sand grains themselves. Testing
volume scattering models which incorporate these types of
scatterers relies on the proper characterization of the hetero-
geneities and particles in the sediment as well as the char-

Figure 1: Eight element high frequency array mounted on
the APL mobile tower.

acterization of competing mechanisms such as roughness.
This can be difficult, especially in an ocean environment
where the complexity of the environment requires both spa-
tial and temporal measurements of the relevant parameters.
In order to overcome these difficulties, a series of measure-
ments of backscattering from a sand sediment were con-
ducted in a man-made, fresh water pond. The pond is shel-
tered from both weather events and the effects of bioturba-
tion. Working in this evironment made it possible to manip-
ulate the sediment interface to reduce the effects of rough-
ness scattering and carefully characterize the sediment prop-
erties. This paper discusses those experiments and high-
lights some of the preliminary results of the data analysis.

2 Measurements

The experiments were performed in the Spring of 2009 and
2010 in the Naval Surface Warfare Center (NSWC) test fa-
cility in Panama City, Florida. This facility includes a man-
made, fresh water pool that is approximately 12 m deep and
has a sand sediment bottom which is 1.5 m deep. The sand
sediment bottom is approximately 50 m long and 30 m wide.
The water at the facility is treated to maintain visibility (up
to 10 m), to discourage the growth of algae and other plant
life, and to keep the environment free of fish.
In the NSWC facility, the Applied Physics Laboratory (APL)
deployed the bottom mounted rail and mobile tower sys-
tem which had previously been deployed for the Sediment
Acoustics Experiment 2004 (SAX04)[1]. The rail consists
of three sections, each 7 m in length, for a total length of 21
m. The tower is mounted on the rail and can move either
continuously or incrementally during data acquisition. A
number of acoustic systems can be deployed with the tower
for synthetic aperture sonar, forward scattering, and acoustic
backscattering measurements.
This paper focuses on backscattering measurements made
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using three pairs of piston sources mounted on the tower
(Fig. 1). This array of source/receiver pairs allowed backscat-
tering from the sand sediment to be measured from 200 to
500 kHz. The array itself was used previously with the tower
during SAX04. For the pond experiment, however, the tower
was reconfigured such that the array could be mounted at the
base of the tower, either 0.5 m or 1.0 m above the sediment.
This allowed the grazing angle to be varied from 7◦ to 80◦.
In order to obtain backscattering from multiple realizations
of the sediment, the tower was moved at 2 cm increments
over a 2 m long section of the rail for scattering from a total
of 100 independent realizations of the bottom.
In order to reduce the effects of roughness scattering, a sec-
tion of the sediment interface, 2.5 m wide and extending
4.5 m from the front edge of the rail, was smoothed by
divers. This process involved placing two metal flats on ei-
ther side of the field, both leveled and at equal height, and
pulling a third metal flat edge along the top of the metal flats,
scraping the sand interface smooth. Sand was added and re-
moved during this process to ensure that the entire area was
smoothed and leveled without any large holes.
To confirm that the area was flat and to determine any resid-
ual roughness, the interface height was measuredwith a laser
line scanner mounted on the in-situ measurement of poros-
ity (LLS-IMP2) system[5]. This system is capable of mea-
suring the sediment elevation with sub-millimeter accuracy
over a 0.30 m by 3.5 m area. The horizontal resolution of
the system is 1 mm. In addition to measuring to the sedi-
ment elevation, the system also captures the (uncalibrated)
reflectivity of the sediment at each measurement point al-
lowing the user to visually identify objects on the interface
such as shells or vegetation.
The sound speed and attenuation in the sediment was mea-
sured using the sediment transmission measurement system
(STMS1) “attenuation array,”[6] which was previously de-
ployed in SAX99 and SAX04. This system consists of two
sources and two receivers which divers insert into the sed-
iment. The sound speed and attenuation is then measured
approximately 10 cm below the sediment interface from 40-
280 kHz. Diver cores were also collected for bulk sediment
density and porosity. Several of these cores were preserved
for computed tomography (CT) analysis to be performed
by the Naval Research Laboratory at Stennis Space Center
(NRL-SSC)[7]. This analysis should allow us to quantify
the density variations in the sediment as well as any distri-
bution in grain sizes. Previous particle size analysis found
that the mean grain size for this sediment was 0.25 mm with
a very narrow distribution of sizes about this mean.
The sand in the test facility has very few shells or large par-
ticles. In order to study how shells may contribute to scatter-
ing from the sediment, a set of backscattering measurements
were also made on a smoothed sand interface on which a
random distribution of shells pieces was placed. These shell
pieces were created by breaking larger shells and keeping
only those shell pieces whose largest dimension was be-
tween 0.5 and 1 cm. Each shell piece was approximately
0.4 cm thick. The shells were distributed on the smooth sed-
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Figure 2: Surface reflectivity collected by the LLS-IMP2 of
the diver-smoothed interface with the shells distributed on
the surface.

iment interface by dropping 1600 pieces along a 0.5 m by 2
m area such that each 0.5 m by 0.5 m area had 400 pieces
(Figure 2). The long axis of this area is perpendicular to the
rail. After the backscatter data was collected, a layer of sand
was deposited and smoothed such that the shells were flush
buried. Backscatter was again measured to examine how the
scattering changed.

3 Scattering from Smooth Sediment

The backscattering strength measured for the smoothed sur-
face is shown in Figure 3 for 200, 300, 400 and 500 kHz.
At this time, only the data for grazing angles below 60◦
has been processed. Also shown in the plots is the pre-
diction of perturbation theory for the scattering due to the
residual roughness measured using the LLS-IMP2. For the
smoothed interface, the roughness spectra in the region of
interest was fit using a power law[1] with γ2 = 2.32 and
w2 = 2.73 × 10−9 m4−γ2 . This seems to capture the scat-
tering up to the critical angle for all but the highest frequen-
cies. The data collected by the LLS-IMP2 does not extend
to the wave numbers required for the high frequencies and
the power law is extrapolated into this region. It may be pos-
sible however to improve the processing of the laser data to
extend the spectra into this region.
Above the critical angle, the data is much higher than the
roughness perturbation theory prediction and indicates that
there is a different scattering mechanism at these angles.
Since the CT scans of the diver cores have not been pro-
cessed, the data was fit using a small-perturbation fluid vol-
ume scattering model. The spectrum chosen for an eyeball
fit of the data was a von Karman spectrum for the den-
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Figure 3: Backscattering strength from the diver-smoothed
sand surface. The roughness scattering (dashed line) was
calculated using the fluid small-roughness perturbation ap-
proximation using the roughness spectrum measured with
the LLS and the measured sediment properties. The volume
scattering (solid line) was determined using a spectrum for
density fluctuations determined from a fit to the data.

sity fluctuations with γ3 = 3.225, w3 = 0.001 m3, and
L3 = 0.0002 m. This is a very small characteristic length
and is on the order of the grain size in the medium. Note that
this is only a preliminary fit of the data. A propermodel/data
comparison will involve the heterogeneity spectrum deter-
mined from the CT scans and will also need to take into ac-
count the poroelastic nature of the sediment through either
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Figure 4: Lambert parameter as a function of frequency for
the diver-smoothed sand surface (points) for a grazing angle
of 30◦ grazing. Also plotted are the SAX04 data (astricks)
for comparison.

the Biot model or the effective density fluid model[8].
The Lambert parameter, determined by dividing the backscat-
tering cross section by sin2 (θ)[3], is shown for θ = 30◦ in
Figure 4. Since this array was used during SAX04, the Lam-
bert parameter determined for the SAX04 data is also shown
for comparison. Both the current data for a clean sand sed-
iment and the SAX04 data for an ocean sediment follow
a similar frequency dependence, while the current data is
roughly 5 dB lower than the SAX04 data.

4 Scattering from a Shell Layer

The backscattering strength for the shells distributed on the
smoothed sediment is shown in Figure 5 for 200, 300, 400
and 500 kHz. The 2 m long area that the shells were dis-
tributed over made it possible to collect scattering data from
the shells from θ = 12◦ to θ = 40◦. Also shown in these
plots is the backscattering strength for the 1 mwide smoothed
sediment next to the shell area. Diver cores were collected
following the measurements discussed in the previous sec-
tion and the sediment was smoothed again for this exper-
iment. This smoothed data was collected as a control to
confirm that the sediment response did not change between
manipulations.
The presence of the shell pieces significantly increases the
backscattering strength relative to the smoothed interface.
The backscattering strength is relatively constant as a func-
tion of grazing angle with little or no difference between the
data above and below the critical angle. Below the critical
grazing angle, there is very little change in the backscatter-
ing strength over the frequency band of the measurements
(200–500 kHz). Above the critical angle, there is a slight
increase at the high end of the frequency band (>400 kHz)
as can be seen in the Lambert parameter plotted in Figure
6. Note also that the scattering levels for the smoothed sed-
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Figure 5: Backscattering strength for the diver-smoothed
sand surface with shells (open diamonds) and without shells
(solid circles).

iment did not differ appreciably for the two manipulations.

5 Conclusions

In the experiments in the NSWC test facility, it was possi-
ble to reduce the roughness of the sand sediment to levels
such that above critical grazing roughness does not explain
the observed scattering. A second scattering mechanism can
be clearly seen to dominate. These measurements in con-
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Figure 6: Lambert parameter as a function of frequency for
the diver-smoothed sand surface (solid circles) and the proud
shell layer (open circles).

junction with sediment characterization including CT scans
of sediment samples should allow us to test volume scatter-
ing theories. The increase in backscattering due to the pres-
ence of shell fragments indicates their importance in high
frequency scattering.
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POWER-LAW ATTENUATION DUE TO SCATTERING FROM
POROSITY HETEROGENEITIES IN SANDY SEDIMENTS
BT Hefner Applied Physics Laboratory, University of Washington, Seattle, WA, USA
DR Jackson Applied Physics Laboratory, University of Washington, Seattle, WA, USA

1 INTRODUCTION

Measurements in sandy sediments in both the laboratory [1] and the ocean [2, 3] have found that
the attenuation at high frequencies (>10 kHz) follows a linear frequency dependence. While this is
consistent with Hamilton’s original observations [4], the sound speed dispersion follows that predicted
by Biot for a porous medium [2]. Theories that have been developed to explain this behavior have
typically focused on the unconsolidated nature of the sand and postulated that there is loss at the grain
contacts due to friction or fluid motion [5, 6]. Models that incorporate grain contact friction into Biot
theory essentially introduce a dashpot into the frame moduli with a frequency response that produces
the appropriate frequency dependence in the attenuation. While the parameters that are necessary
to describe the dashpot are related to the properties of the medium, such as the fluid viscosity, these
parameters are instead determined from a best fit to the data. At this point in their development,
the theories have limited predictive power and there is not a clear relationship between the model
parameters and the material properties.

An alternative theory has recently been proposed to explain the measured dispersion and attenuation
which does not invoke any loss mechanism at the grain contacts but instead considers the inherently
random nature of the granular packing. This random packing should produce heterogeneities in the
sediment properties which in turn should cause sound propagating through the material to be scat-
tered. A coherent acoustic wave passing through the material should lose energy to this scattering
mechanism and have an increased attenuation relative to that predicted by Biot Theory. This scatter-
ing mechanism has been modeled by applying perturbation theory to Biot’s poroelastic equations [7].
Heterogeneity in the bulk frame modulus was initially considered as a likely candidate to produce scat-
tering loss. However it was found that due to the unconsolidated nature of the medium, the bulk frame
modulus was too weak to produce sufficient scattering. Attention has since shifted to variations in the
porosity, a property that has a strong influence on the sound propagation through the medium [2].

For this scattering mechanism, the model predicts that the form of the correlation function, or alterna-
tively the power spectral density, for the porosity variations determines the frequency dependence of
the attenuation. For the commonly used Von Karman correlation function [8], the resulting frequency
dependence remains below f1 as the Hurst coefficient, ⌫, is varied over the range 0 < ⌫  1. For the
special case of ⌫ = 1/2, the Von Karman correlation function reduces to the exponential correlation
function which produces an attenuation that goes as f2 then rolls off at high frequencies. In this paper,
we determine the form of the correlation function that produces the observed attenuation.

2 PERTURBATION THEORY

In order to examine how the choice of correlation function affects the frequency dependence of atten-
uation, we will consider the sediment as a fluid medium with heterogeneities in the porosity. To model
the scattering loss, we will apply perturbation theory to the heterogenous wave equation,

r ·
✓
1

⇢
rp

◆
+ !2p = 0, (1)
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where ⇢ is the density,  is the compressibility, and ! = 2⇡f . We will assume that both the density
and the compressibility are functions of the porosity which varies as a function of position,

� (r) = �0 + �� (r) , (2)

where �0 = h� (r)i is the average over an ensemble of realizations of the medium (denoted by h·i),
�� (r) is the local fluctuation of the porosity, and h�� (r)i = 0. To account for the random variations in
porosity, we will expand both the density and compressibility as Taylor series about the mean porosity,

 (r) = 0 (1 + F�� (r)) , (3)

where

F =
1

0

@0

@�
, (4)

and

1

⇢ (r)
=

1

⇢0

✓
1� F⇢�� (r) +

1

2
F 2
⇢ �� (r)2 + ...

◆
, (5)

where

F⇢ =
1

⇢0

@⇢0
@�

. (6)

For both the compressibility and the density, we have assumed that all higher derivatives are equal to
zero.

Substituting these expansions into Eq. 1, we can write the expanded equation of motion as,

�
L0 + L1 (��) + L2

�
��2

��
p = 0, (7)

where L0p = 0 is the homogenous equation of motion. We can now solve this equation by using the
perturbation solution for propagation through a heterogenous medium [7],

L0 (r) p0 (r) +

⌧
L1 (r)

Z
g0 (r, r

0)L1 (r
0) p0 (r

0) d3r0
�
+ hL2 (r)i p0 (r) = 0, (8)

where

g0 (r, r
0) =

eik0|r�r0|
4⇡ |r� r0| (9)

is the Green’s function for a point source in a homogenous medium. Eq. (8) was first derived by Karal
and Keller for propagation of acoustic, elastic, and electromagnetic waves through heterogenous
media [9].

After some manipulation and assuming a plane wave solution for the mean field in the medium,

p0 = Aeik·r, (10)
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the equation for the effective wavenumber in the medium is

k2 � k20 � k40F
2


Z
g0 (R)C (R) e�ik·Rd3R+ 2ik20F⇢F

Z
k ·rg0 (R)C (R) e�ik·Rd3R

� F 2
⇢

Z
k ·rr0g0 (R) · k C (R) e�ik·Rd3R+

1

2
F 2
⇢ �

2k2 = 0, (11)

where C (R) = h�� (r) �� (r0)i is the covariance, R = r � r0, and �2 = C (0) is the variance of the
porosity fluctuations. This equation can also be expressed in terms of the power spectrum of the
porosity variations,

W (k) =
1

(2⇡)3

Z
C (R) eik

0·Rd3R, (12)

as

k2 � k20 � k40F
2
 (2⇡)3

Z
W (k� k0)

k02 � k2
d3k0 � 2i (2⇡)3 k20F⇢F

Z
k · k0W (k� k0)

k02 � k2
d3k0

+ (2⇡)3 F⇢1
2

Z
(k · k0)

2 W (k� k0)

k02 � k2
d3k0 +

1

2
F⇢2�

2k2 = 0. (13)

If the covariance is the exponential function,

C (R) = �2e�R/L, (14)

where L is the characteristic length scale of the porosity heterogeneities, the integrals in Eq. (11) can
be solved exactly.

3 THE VON KARMAN CORRELATION FUNCTION

One of the more commonly used covariance functions is the Von Karman covariance function which
has the corresponding power spectrum,

Wv (k) =
�2L3�

�
⌫ + 3

2

�

⇡
3
2� (⌫) (1 + k2L2)⌫+

3
2

, (15)

where 0 < ⌫  1. When ⌫ = 0.5, this power spectrum reduces to that of the exponential function,

We (k) =
�2L3

⇡2 (1 + k2L2)2
. (16)

In Fig. 1, the sound speed and attenuation were calculated for a sand sediment using the Von Karman
covariance function when ⌫ = 0.12 and ⌫ = 0.5. For this example, the sediment density is ⇢ =
2.0 g/cm3, the water sound speed is cw = 1500 m/s, the sediment sound speed is cs = 1.1 cw, and
the ratio of the imaginary to real, unperturbed sediment wavenumber is � = 0.0018. The wavenumber
ratio in a sand sediment is typically an order of magnitude larger than the value used here, but since
we are considering scattering as the dominant loss mechanism in the sediment, we have chosen a
lower value for the intrinsic attenuation.

53



Proceedings of the 11th European Conference on Underwater Acoustics

10
0

10
1

10
2

10
3

10
4

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

Frequency (kHz)

S
o
u
n
d
 S

p
e
e
d
 R

a
tio

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

10
4

Frequency (kHz)

A
tt
e
n
u
a
tio

n
 (

d
B

/m
)

Figure 1: Sound speed ratio (left) and attenuation (right) solutions to the perturbation equation given
in Eq. (8). In both both cases the Von Karman correlation function was used with ⌫ = 0.5 (dashed
line) and ⌫ = 0.12 (dashed-dotted line). For both cases, � = 0.05 and L = 10 cm. Also shown is the
unperturbed solution (solid line).

In the examples, both covariance functions yield negative dispersion with the larger value for ⌫ leading
to a larger decrease in sound speed. For the attenuation, both covariances produce attenuations
which follow an f2 dependence below 40 kHz. At roughly 40 kHz, both attenuations exhibit a “knee”
above which the scattering contribution due to the exponential covariance becomes constant while the
contribution from the Von Karman with ⌫ = 0.12 follows an approximately f0.5 dependence. Neither
function yields the linear frequency dependence seen in both laboratory and ocean sand sediments.

For the power spectra given in Eqs. (15) and (16), as ⌫ decreases the high wavenumber dependence
of the spectra increases from k�4 for ⌫ = 0.5 to k�3 as ⌫ approaches 0. As ⌫ decreases, the frequency
dependence of the attenuation increases from f0 towards f1/2. This indicates that in order to achieve
a linear frequency dependence, the power spectrum should should follow a power-law, k� , where
� > �3. The difficulty with this form of the power spectrum is that if � � �3 as k ! 1, the variance,
which is found by integrating over the power spectrum, diverges and the spectrum becomes non-
physical.

4 CONSTRUCTING AN ARBITRARY COVARIANCE

While it is not possible to use a power law spectrum that has � > �3 as k ! 1, it is possible to
construct a spectrum that follows the required power law over a limited band of k. This approach is
similar to the Nearly Constant Q (NCQ) model developed originally for seismology [10]. In the NCQ
model, the attenuation is modeled as a sum of relaxation mechanisms each of which has the same
amplitude but different central frequencies. This produces a linear attenuation over the band in which
these central frequencies reside.

To produce the spectra of interest here, we will write the covariance as a sum of exponential covari-
ance functions,

C⌃ (R) = �2
NX

n=0

wne
� R

Ln , (17)

where the correlation lengths are distributed logarithmically in size,

Ln = L010
n�, (18)

54



Proceedings of the 11th European Conference on Underwater Acoustics

10
0

10
2

10
4

10
6

−300

−250

−200

−150

−100

−50

k (1/m)

W
 (

d
b

 m
3
)

k−2.75

k−4

Figure 2: Power spectrum calculated using Eq. (21) with ⌧ = �0.25, L0 = 10 cm, LN = 0.1 mm,
� = 0.1, and � = 0.01.

the density of the correlation lengths is determined by the spacing, �, the weight of each covariance
is proportional to the correlation length raised to some power,

wn =
L⌧
nPN

n=0 L
⌧
n

, (19)

and

NX

n=0

wn = 1. (20)

This last relation insures that the covariance is equal to the variance at R = 0. The associated power
spectrum can also be written as a sum of power spectra,

W⌃ (k) =
�2

⇡2

NX

n=0

wnL�3⌧
n

(k2 + L2⌧
n )2

. (21)

An example power spectrum constructed using this summation is shown in Fig. 2. For this example,
⌧ = �0.25 and the correlation lengths vary between L0 = 10 cm, LN = 0.1 mm.

5 MODELING LINEAR ATTENUATION

In applying this covariance summation, if ⌧ > 0 the slope of the spectrum in the wavenumber band
of the summation corresponds to the von Karman spectrum and varies from � = �4 to � = �3.
For negative values of ⌧ , the spectral slope increases until ⌧ = �4 and � = 0. To obtain a linear
attenuation for the fluid model that we are considering here, ⌧ = �0.25. This value was used in Fig. 2
and also to calculate the attenuation and sound speed in Fig. 3.

55

Jody
Typewritten Text



Proceedings of the 11th European Conference on Underwater Acoustics

10
0

10
1

10
2

10
3

10
4

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

1.11

Frequency (kHz)

S
o
u
n
d
 S

p
e
e
d
 R

a
tio

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

10
4

Frequency (kHz)

A
tt
e
n
u
a
tio

n
 (

d
B

/m
)

Figure 3: Sound speed ratio (left) and attenuation (right) calculated for the covariance given in Eq.
(17) with ⌧ = �0.25, L0 = 10 cm, LN = 0.1 mm, � = 0.1, and � = 0.01. The solid lines are the
unperturbed sound speed and attenuation, the dashed lines are the perturbation theory result, and
the dash-dotted line is the attenuation for the unperturbed medium when � = 0.0165.

Note that while the attenuation follows a linear frequency dependence quite well, the sound speed
shows significant negative dispersion which is not seen in most laboratory and ocean sand sediments.
The fluid model is only an approximation used here to present both the perturbation theory and to
show how a linear attenuation can be obtained. A better approximation to a sand sediment can be
found by applying perturbation theory to the effective density fluid model (EDFM) [11]. Again Eq. (17)
can be applied and a linear attenuation can be obtained with ⌧ = �1 which produces a spectral slope
of � = �2. In this case the sound speed exhibits weak, positive dispersion at high frequencies that is
more consistent with measurements.

6 CONCLUSION

To account for heterogeneities in the porosity of a sand sediment, perturbation theory was applied to a
fluid model of the sediment. The resulting wave equation shows negative dispersion and an increase
in attenuation. For the commonly used Von Karman covariance function, the frequency dependence
of the attenuation was less than that observed in most sand sediments. By using a sum of exponential
covariance functions, it is possible to construct a covariance which can produce an attenuation with an
arbitrary frequency dependence. It is therefore possible to obtain a linear attenuation with perturbation
theory using this summation. While the resulting sound speed exhibits a dispersion which is greater
than that observed in real ocean sediments, preliminary results indicate that this is not the case if
perturbation theory is applied to EDFM.
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